
Verification of NIMROD with 
Fluid “ITG-like” Modes	


D. D. Schnack, D. C. Barnes1, P. Zhu, 
C. C. Hegna, C. R. Sovinec	


University of Wisconsin, Madison	

1TriAlpha Energy	




“ITG mode” = Ion Temperature 
Gradient Mode	




Verification and Validation	


•  Verification	

– Are the equations being solved correctly?	

– Comparison with known solutions, or 

benchmarking with independent codes	

•  Validation	


– Are the right equations being solved?	

– Direct comparison with experiment	


•  Here we will deal with Verification	




Verification of NIMROD in MHD	

•  NIMROD has been successfully verified in most 

realms of ideal and resistive MHD	

–  Ideal MHD waves and instabilities	

– Resistive instabilities (linear and non-linear) in slab, 

cylindrical, and toroidal geometry	

– Anisotropic thermal conduction (comparison with 

theory)	

–  Peeling and ballooning edge modes (comparison with 

ELITE)	

–  Saweeth (comparison with M3D)	

– High-β disruption (comparison with theory)	




Verification of NIMROD in Extended 
MHD	


•  Energetic minority ion species	

– Kink stabilization/TAE destabilization (comparison 

with NOVA-K and M3D)	

•  Two-Fluid/FLR	


–  Stabilization of g-mode in slab geometry (comparison 
with theory)	


– Drift-tearing modes (King)	

– De-stabilization of parallel sound wave by FLR effects 

(ITG-like mode)	

•  Comparison with theory	

•  Hope for comparison with kinetic code	




FLR Effects on Fluid Modes	




Two-fluid/FLR Equations	


•  Low order moments for ions and electrons	




Extended MHD	


•  2-fluid equations can be combined into “single 
fluid form” (extended MHD)	




Expressions for Stress Tensor in 
Magnetized Plasma	


•  Can be decomposed as	


•  Only Π^ is independent of collision frequency	

•  Called the gyro-viscosity	

•  Captures lowest order (in kperp ρi << 1) effect of 

finite ion Larmor radiius	




Properties of Gyro-viscosity	


•  Independent of collisions	

– Remains in collisionless limit	


•  Causes no heating or dissipation	


•  Completely reversible transport of momentum 
due to spatial distribution of ion Larmor orbits	

– FLR effect	

– No increase in entropy	




Closures: Heat Flux	

•  Can be decomposed as	


•  Dependence on collision frequency	


•  κ^ survives for collisionless model	


•  Ion diamagnetic heat flux 	


•  Reversible flux of heat due to spatial distribution of ion Larmor orbits	


–  No increase in entropy	




Diamagnetic Flows and Fluxes	

•  Solve ion momentum equation for velocity	


•  These can be consider ordered in ρi/L <<1	

•  These flows can cause ``transport” by fluxes, 

i.e. ~ nV*	

•  This is the origin of the FLR closures	
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Diamagnetic Heat Flux	
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• Drift (not shown)	

• Gyro-circle Ellipse	

• Modification of Ω	
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Gyro-viscosity	




Gyro-viscosity	




Gyro-viscous Cancellation	


•  In Drift MHD (small deviations fom 
equilibrium), acceleration ~ stress	


•  Since Π^ arises from drifts, there is a partial 
cancellation between the gyro-viscous force 
and advection by V*:	


•  This is the gyro-viscous cancellation	

•  It is often assumed to be complete: 	




~ GV Cancellation can be seen from 
Form of GV Stress Tensor	


•  For unsheared slab equilibrium with pi = pi(x):	


•  Gyro-viscous cancellation is incomplete, but 
…	


•  Assuming it is exact is often a good 
approximation, and simplifies the algebra	




Diamagnetic Heat Flux 
Cancellation	




FLR Effects on Modes	

•  Interchange type modes	


–  g-mode: ω(ω-ω*)+γ2
MHD = 0,   γ2

MHD=g/Ln0	

•  Unstable in MHD (ω* = 0)	

•  Stable if ω* > 2 γMHD	


– MRI, driven by plasma rotation (Ferraro)	

•  Gyro-viscosity completely stabilizing if β >> 1	


•  Parallel sound waves	

–  Stable in MHD and Hall MHD	

– Destabilized by FLR (GV and IDHF)	

–  ITG-like fluid modes	




ITG-like Fluid Mode	

•  Consider modes driven by ion temperature gradient in slab geometry	


–  No density gradient, n0(x) = n0	

–  Constant electron temperture, Te0(x) = Te0	

–  No magnetic shear, B0 = Bz0(x) ez	

–  Ion temperature gradient, Ti0(x) = Ti0 e x/L

	

–  Parallel sound wave driven unstable by FLR effects (compare with g-mode)	


•  Originally derived from kinetic theory	

–  L. I. Rudakov and R. Z. Segdeev, Sov. Phys. – Doklady 6, 415 (1961)	

–  B. Coppi, M. N. Rosenbluth, and R. Z. Segdeev, Phys. Fluids 10, 582 (1967) (First fluid derivation)	


•  Very important mode in tokamak transport (toroidal effects, magnetic shear, 
etc.)….one of the most studied modes in plasma physics	


•  Stable in ideal, resistive, and Hall MHD!	

•  Requires FLR effects for instability	


–  Ion gyro-viscous stress	

–  Ion diamagnetic heat flux	


•  Good mode for verification of extended fluid model	




Fluid Dispersion Relation	




Fluid Dispersion Relation	
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Fluid Dispersion Relation	


Sound Wave	
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Fluid Dispersion Relation	


Sound Wave	
 Low freq. “drift” mode	


“ITG”	




Fluid Dispersion Relation	


•  Electro-static	

•  Ballooning ordering: kz ~ 1, ky ~ 1/ε2, di/L ~ ε2	

•  Local approximation: f ~ ei(k_y y + k_z z)	

•  No gyro-viscous or diamagnetic cancellations assumed	


Sound Wave	
 Low freq. “drift” mode	


“ITG”	




Physical Picture(?)	
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Parallel sound wave, pressure gradient:	
 dPi0/dx	


π phase shift in Vxi:  δp = Vxi dPi0/dx reinforces pressure perturbation; 
FLR cancels diamagnetic advective contributions	




Electrostatic Marginal Stability	


•  Cubic of form:	


•  Unstable if	

•  Approximate instability condition:  	




Behavior of Roots, f3(w;η)=0	


Threshold in ηi	
 Threshold in kperp ρi	




ITG is Electrostatic	




Growth Rate Scaling Depends on 
How kz/ky Varies	




NIMROD Results	




Computational Geometry	


Computational problem is 2D in (x,z) plane,	

1-D in x and kz	




Equilibrium Pressure Profile	




Instability Drive in Tanh Model	


d ln Ti0/dx	


x	


Biased towards x < 0	




Theory/Computation Comparison:���
 γLOCAL, γAVG, γNIMROD vs. ηi	




Theory/Computation Comparison:���
γLOCAL, γNIMROD vs. kperp ρi	




1/Lti = 3 (m-1)	

kperp=125.6 m-1	


kpll = 0.1 m-1	


βi = 0.01	

βe = 0.04	

di = 0.0161 m	


x(m)	


Computational Eigenfunction Structure	


• Perturbed ion temperature	

• More structure as 1/L increases	

• Resolved	

• Local theory gives no eigenfunction structure	

• Slightly biased toward x < 0.	


x(m)	
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Computation/Theory Comparison:���
γLOCAL, γNIMROD vs. fe = βe/β	




Comparison with Kinetic Theory	


•  Preliminary!	

•  Comparison between local analytic fluid and 

kinetic models (Cheng, Parker)	

•  No computational comparisons yet…..	

•  Still a lot of work to be done!	




Growth Rate, kz/ky = 0.01	




Real Frequency, kz/ky = 0.01	




Discussion	

•  Fluid theory requires both:	


–  Ion gyro-viscous stress	

–  Ion diamagnetic heat flux	

–  Only details depend on form of “gyro-viscous cancellation”	


•  Instability threshold in both 1/LTi0 and kperp ρi (at fixed kz)	

•  Reasonable agreement between NIMROD and local theory on 

growth rate behavior	

•  Comparison not possible on eigenmode structure	

•  NIMROD is verified where theory and computation can be 

compared reasonably	

•  Fluid theory has no natural stabilizing mechanism at high k	


–  Implications for non-linear extended MHD computations	

•  Preliminary comparison of local fluid and kinetic analytic models	

•  Await direct comparison between NIMROD and kinetic codes	




The End	




Physical Behavior(?)	
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Physical Behavior(?)	


+ + + - - 

Parallel sound wave: Pressure and Vz perturbation parallel to B	


dPi0 / dx	


Vx when dPi0/ dx = 0	


Vx when dPi0/ dx ≠ 0	


•  dPi0 / dx induces phase shift in Vx	

•  δp = Vx dPi0 / dx re-inforces pressure perturbation	

•  Instability	



